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Discussion 
Comments on "Activation energy for the 
crystallization of  glass from DDTA curves" 

The usual methods of calculating the activation 
energy of a solid-state reaction from dynamic 
kinetic data require either multiple experimental 
curves at different heating rates, or difficult 
numerical processing of a single curve. It is there- 
fore timely that Marotta et al. [1] proposed a 
method in which the experimental work involves 
only obtaining data at one heating rate, and the 
calculation involves merely the values of the tem- 
perature at two points that can easily be detected 
on the curve obtained. Unfortunately, as sug- 
gested in this Discussion, their derivation appears 
to have omitted a correction factor, and may even 
be basically wrong. 

The method in question may briefly be des- 
cribed as follows. Two types of reaction kinetics 
are considered: 

1 - - ( l - - a )  i m =  kt (1) 
and 

- - l n ( 1 - - a )  = (kt) n, (2) 

where a is the reacted volume-fraction, k a func- 
tion of the temperature T, and t the time. The rate 
parameter of interest, namely, activation energy E, 
is contained in 

k(T) ~ exp(--E/RT), (3) 

where R is the gas constant. 
The authors do well in noting and investigating 

the possibility that E can be simply calculated 
from T1 and T2, the temperatures at inflection- 
points (i.e., points of maximum and minimum 
slope), on an experimental d~/dt curve. These 
points are given by: 

daa/dT 3 cc d3a/dt 3 = 0. (4) 

In this Discussion I shall denote kt  by u. The 
authors noted that 

dnu/dT n ~ (E/RT2)nu. (5) 

With these approximations, and if Equations 1 and 
2 are used as they stand to express a in terms of u, 
then Equation 4 becomes: 

n2u 2 -  (3n -- 1)u + 1 = 0, (6) 
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or (un) 2 - 3 u  n+ 1 = 0 (7) 

respectively, after trivial solutions (u = 0, 1 or 
u ~oo, i.e., at the beginning and end of the reac- 
tion) have been excluded, E can then be expressed 
in terms of the ratio of the two solutions for each 
quadratic equation and thus in terms of/"1, T2 and 
the numerical coefficients of the equation. 

First of all, a comment on Equation 5 is in 
order. It is seen that the results: 

,u  

d r  r - " u '  ( a )  

. Rr2r  u (9) 

and 
,3u 

tRr 2] r lo) 

'are valid under the condition that E/RT >2> 4. This 
condition may with advantage be stated explicitly, 
since, among solid-state reactions in general, many 
have relatively low activation energies. As exam- 
ples, E / R T <  10 for the dehydrations of copper 
sulphate penta- and tri-hydrates, ammonium and 
potassium alums, Cu(HCO2)2"4H20, UO2(NO3)2" 
6H20, and a - C a S O  4 . 1 H 2 0 ;  the dehydroxylation of 
Co(OH)2; the decomposition of CrH, ThH3, 
Fe2(SO4)3 and ZnsO2(SO4)a; or the oxidation of 
zirconium [2, 3], at usual experimental tempera- 
tures. The approximations given by Equation 5 are 
no longer adequate in these cases. 

The formulae for E given in [ 1 ]: 

E ( ~ _  --~2) = 1.59, (11) 
R 

and 

E ( ~ _  - - ~ ) =  0.64 (12) 
R 

referred to the special cases of n = 3 in Equations 
1 and 2, respectively. They have been derived 
apparently with the assumption that k(TO/k(T2) = 
U1/U2, where U1 and U2 are the roots of Equation 
6 or 7. However, this leaves out the t factors, 
which are necessarily unequal. The formulae 
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should read instead: 

- -  + lnT1 - 1.59 or 0.64; (13) 

where To is the temperature at zero time. Large 
errors may result if the second term on the left has 
been omitted; more often than not it amounts to a 
significant proportion of  0.64 or 1.59, especially 
when the data have been obtained at a high heat- 
ing rate. 

Thirdly, and most crucially, it is debatable 
whether Equations 1 and 2 are applicable to the 
situation in hand. In a dynamic experiment, when 
T is a function of  t, a cannot simply depend on 
the instantaneous value of  u (t) = k IT(t)] t. Rather, 
the way in which T has been changing with t must 
also affect a. This effect is taken into account in 
the equations: 

1 - - ( 1 - - a )  TM =f: k dt ( 1 4 )  
and 

- - l n ( 1 - - a )  = k d t  . (15) 

The equations used in [1] are valid only in the iso- 
thermal case, when k is constant and can be taken 
out of  the integral. The formulae for E proposed 
there may therefore need more drastic revisions. 
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Reply to "Comments on "'Activation energy 
for the crystallization of  glass from DDTA 
curves"" 

The method of  obtaining the value of  the activation 
energy for the crystallization of  glass from a single 
derivative differential thermal analysis (DDTA) 
curve recently proposed by the authors [1] is 
criticized by [2]. 

As the main remark concerns the use under 
non4sothermal conditions of  the two kinetic 
equations: 

1 - - ( l - - a )  1/a = kt (1) 

and 

-- In (1 -- a) = (kt) 3 (2) 

where a is the volume fraction of  the crystals, 
k is a constant and t is time, some elucidations are 
required. 

We assumed that under non-isothermal con- 
ditions t in Equation 2 represents the time of  
heating at each temperature T [3] and therefore 
it has to be considered constant and proportional 
to the reciprocal of  the differential thermal 
analysis (DTA) heating rate,/3, i.e. 
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k t 

kt = --. (3) /3 

Substituting Equation 3 into Equations 1 and 2 we 
obtained the two kinetic equations proposed by 
Matusita and Sakka [4, 5] for surface and bulk 
crystallization of glass from a fLxed number of  
nuclei under non4sothermal conditions. 

From the roots of  each of  the two equations: 

9(kt) 3 -- 8(kt) + 1 = 0 (4) 

(kt) 6 -- 3(kt) 3 + 1 = 0 

and 

(5) 

that satisfy the condition that at the inflection- 
point temperatures, Tf, on the DDTA curve (see 
Fig. 2 [1])  

d 2 AT d 3 a 

we obtain 

d T  2 d T  3 
- 0 ( 6 )  

(kt)Tf~ = (k')Tf2 8 + 281/2 

(kt)T~ 1 (k')tf, - 8 - -  281/2 (7) 
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